引言:探索材料科学的微观奥秘,离不开先进的成像技术。动态显微CT(Micro-CT)作为前沿科技,引领着材料成像领域的新变革。TESCAN动态显微CT产品市场总监Arno Merkle博士,为您揭秘动态显微CT的魅力。
关于Arno Merkle博士
Arno Merkle,西北大学 (Northwestern University,美国伊利诺伊州埃文斯顿)材料科学与工程系博士,已经在电子显微镜和X射线显微镜行业工作10多年,主要担任细分市场和产品营销的领导角色。TESCAN收购比利时的Micro CT技术公司XRE后,他于2018年初加入TESCAN, 现任Micro-CT产品市场总监,负责TESCAN Micro CT产品线的全球业务发展活动。
以下为材料科学界的知名网站AZoNetwork对TESCAN Micro-CT 产品市场总监Arno Merkle博士的专访内容。
Micro-CT是材料成像领域中最令人兴奋的表征手段之一,您能介绍一下它的工作原理和原因吗?
Micro-CT利用X射线照射在进行360°匀速旋转的样品,获取二维的投影图像。通过对这些二维图像进行大量的计算和重构,生成样品的数字三维结构。Micro-CT和医用CT的基本原理是相同的,但是Micro-CT能够提供更高的分辨率。Micro-CT技术之所以在材料研究中如此重要,部分原因是其分析方式对样品是无损的——无需对样品进行加工或切割,人们就能够三维可视化的分析样品的内部结构;还有一部分原因是,除了对“静态”的样品内部结构进行了解之外,该技术可以对样品实现“动态”成像——也就是随时间变化(可以称之为“4D”)成像,研究人员可以了解随时间的变化样品内部的变化过程。
TESCAN Micro-CT专业从事动态或4D Micro-CT。什么是动态
在时间分辨领域,Micro-CT成像技术一直在发展,经历了静态、延时成像、“4D”成像等。这些技术试图对样品在一段时间内的变化进行成像,无论是间断的还是连续的过程,时间范围可以是数秒、数分钟、数小时甚至数天或数周。
“动态”CT是时间分辨X射线成像最高级别的应用,要求能够追踪样品的变化,并需要不断对其进行成像。我们可以将“延时成像”看作是定格动画,图像有间断,是不连续的,而“动态成像”是平滑的运动图像。动态CT的优势在于能够进行真实的、不间断的原位实验。
视频1:延时成像
视频2:动态成像
视频链接:https://space.bilibili.com/673479931/channel/seriesdetail?sid=308878
到目前为止,大多数基于实验室系统的4D研究仅使用间断的“延时”方法进行,而速度更快、不间断的动态CT一般需要用到同步加速器才能实现。
TESCAN致力于为实验室提供动态CT分析能力,我们开发了新的硬件和软件,可以更轻松地促进此类与时间相关的研究,从而扩大了可以在实验室中进行的动态实验的范围。
我们发表的论文《Innovations in laboratory‐based dynamic micro‐CT to accelerate in situ research》,DEWANCKELE,J.(2020年),Journal of Microscopy,277:197209.doi:10.1111/jmi.12879),重点介绍了动态CT的方法,感兴趣的读者可以查看。
新系统的哪些功能保证了可以进行这些动态或延时研究?
为了优化“动态”CT的工作流程,需要大量的开发工作,包括硬件、软件,还有应用程序工作流程,并需要将它们融为一体。在硬件方面,优先考虑提升数据通量,为此就需要开发高功率X射线源和高效的检测器。此外,必须实现连续的、不停顿的360°连续扫描功能——我们开发了两种方案,一种是集成电源、数据接口的专用旋转样品台;另一种是独特的DynaTOM,我们开发了类似于龙门架结构的成像系统,实现样品固定不动,X-射线源和检测器围绕样品旋转。这种结构可以让研究人员不必再担心电缆、流体管线或传感器的在实验过程中出现缠结或实验系统的复杂性过高,专心原位实验设计,而通常这些问题是传统原位实验的主要障碍。
视频3:原位观察啤酒泡沫
视频链接:https://space.bilibili.com/673479931/channel/seriesdetail?sid=308878
硬件部分仅仅是实现“动态”CT的一部分,我们还在软件和应用程序工作流程方面的开发进行了多种尝试,主要集中在对扫描系统的优化以实现能够连续采集、重建,并让用户可以更便捷、更直观地完成可视化处理。而且,为了能够应对最复杂的实验,在各方面我们都保留了高度的灵活性。我们在动态影像应用开发领域拥有多年丰富的应用经验,可以为我们的客户提供世界一流的培训和咨询团队。
针对系统的动态性能进行优化,这是否意味着不得不牺牲空间分辨率?
在速度、信噪比和分辨率方面始终存在取舍——每个测量或成像系统都是如此。在专注于优化动态CT的能力的同时,我们在这些需求之间取得了很好的平衡。市场上有一些CT具有更高的空间分辨率,但是它们是用于满足不同的需求的,无法实现动态CT所需的高速、高保真度的采集。我们认为所有这些CT之间彼此是高度互补的,就像SEM、FIB-SEM和TEM在电子显微镜领域中相互补充一样。
在材料科学中动态显微CT有许多很好的潜在应用,您能举一些例子吗?
原位实验的类型确实是无穷无尽的,在过去的几年中,我们在材料科学的许多应用中都看到了动态CT的应用需求。例如,结构材料(例如金属、3D打印的零件或复合材料)的机械性能研究领域就是一个明显的例子,我们需要通过成像和分析研究载荷下的故障与裂纹、空隙,以及其它缺陷的相关性。在这里,我们需要样品在压缩、弯曲或拉伸状态下成像,并尝试将变形事件与力-位移测量值相关联。在破坏或变形的时候,我们会使用Micro-CT或其它技术(例如SEM或等离子体FIB-SEM)对感兴趣位置进行深入研究,这样能够更精细地观测微观结构细节的变化。
其它应用领域:包括研究多孔和轻质结构的变形,例如泡沫金属或聚合物;食品科学中例如面包在烘烤中的空隙变化或啤酒泡沫的塌陷;包括消费品在内的各种材料中的水合、过滤或吸收过程;电池的腐蚀和充电循环代表了另外两个非常普遍的应用,尽管时间跨度会稍长。最近,我们致力于研究液体中的颗粒悬浮液并探索相关的流动行为。
最重要的是,我们的动态CT有能力适应各种感兴趣的时间范围,从最快的时间分辨率小于10秒的快速反应过程,一直到间断的、延时的缓慢移动的过程——其实验时间可能需要持续几周或几个月。
如对动态显微CT技术感兴趣,或者想要了解更多关于TESCAN Micro-CT产品的信息,可访问TESCAN的官方网站:https://info.tescan.com/micro-ct